

VISUAL BASIC
COLLECTIONS
AND HASH TABLES

Tom Niemann

 - 2 -

Preface

Hash tables offer a method for quickly storing and accessing data based on a key value.
When you access a Visual Basic collection using a key, a hashing algorithm is used to
determine the location of the associated record. Collections, as implemented, do not
support duplicate keys. For this reason, and other performance considerations, you may
wish to code your own hashing algorithm.
 I'll discuss open hashing, where data is stored in a node, and nodes are chained from
entries in a hash table. I'll also examine the effect of hash table size on execution time. This
is followed by a section on hashing algorithms. Then we'll look at different techniques for
representing nodes. Finally, I'll compare the various strategies, examining execution time
and storage requirements.
 Source code for all examples may be downloaded from the site listed below. Cormen
[2001] and Knuth [1998] both contain excellent discussions on hashing. Stephens [1998]
is a good reference for hashing and node representation in Visual Basic. This article also
appears in the spring 1999 issue of the Technical Guide to Visual Programming, published
by Fawcette Technical Publications.

THOMAS NIEMANN
Portland, Oregon

web site: epaperpress.com

http://www.amazon.com/exec/obidos/ISBN=0262032937
http://www.amazon.com/exec/obidos/ISBN=0262032937
http://www.amazon.com/exec/obidos/ISBN=0201896850
http://www.amazon.com/exec/obidos/ISBN=0471242683
http://www.visualprogramming.com/
http://epaperpress.com/

 - 3 -

Open Hashing
A hash table is simply an array that is addressed via a hash function. For example, in Figure
1, HashTable is an array with 8 elements. Each element is a pointer to a linked list of
numeric data. The hash function for this example simply divides the data key by 8, and
uses the remainder as an index into the table. This yields a number from 0 to 7. Since the
range of indices for HashTable is 0 to 7, we are guaranteed that the index is valid.

#
#

#
#

#

#
16

11

22
#
6

27
#

19

HashTable

0
1
2
3
4
5
6
7

Figure 1: A Hash Table

 To insert a new item in the table, we hash the key to determine which list the item goes
on, and then insert the item at the beginning of the list. For example, to insert 11, we divide
11 by 8 giving a remainder of 3. Thus, 11 goes on the list starting at HashTable(3). To
find a number, we hash the number and chain down the correct list to see if it is in the table.
To delete a number, we find the number and remove the node from the linked list.
 Entries in the hash table are dynamically allocated and entered on a linked list
associated with each hash table entry. This technique is known as chaining. If the hash
function is uniform, or equally distributes the data keys among the hash table indices, then
hashing effectively subdivides the list to be searched. Worst-case behavior occurs when all
keys hash to the same index. Then we simply have a single linked list that must be
sequentially searched. Consequently, it is important to choose a good hash function. The
following sections describe several hashing algorithms.

Table Size
Assuming n data items, the hash table size should be large enough to accommodate a
reasonable number of entries. Table 1 shows the maximum time required to search for all
entries in a table containing 10,000 items.

size time (ms)
1 23,544

10 2,473
100 331

1,000 100
10,000 70

Table 1: Table Size vs Search Time

 - 4 -

A small table size substantially increases the time required to find a key. A hash table may
be viewed as a collection of linked lists. As the table becomes larger, the number of lists
increases, and the average number of nodes on each list decreases. If the table size is 1,
then the table is really a single linked list of length n. Assuming a perfect hash function, a
table size of 2 has two lists of length n/2. If the table size is 100, then we have 100 lists of
length n/100. This greatly reduces the length of the list to be searched. There is considerable
leeway in the choice of table size.

Hash Functions
In the previous example, we determined a hash value by examining the remainder after
division. In this section we’ll examine several algorithms that compute a hash value.

Division Method (TableSize = Prime)
A hash value, from 0 to (HashTableSize - 1), is computed by dividing the key value by the
size of the hash table and taking the remainder:

Public Function Hash(ByVal Key As Long) As Long
 Hash = Key Mod HashTableSize
End Function

Selecting an appropriate HashTableSize is important to the success of this method. For
example, a HashTableSize divisible by two would yield even hash values for even keys,
and odd hash values for odd keys. This is an undesirable property, as all keys would hash
to an even value if they happened to be even. If HashTableSize is a power of two, then the
hash function simply selects a subset of the key bits as the table index. To obtain a more
random scattering, HashTableSize should be a prime number not too close to a power of
two.

Multiplication Method (TableSize = 2N)
The multiplication method may be used for a HashTableSize that is a power of 2. The key
is multiplied by a constant, and then the necessary bits are extracted to index into the table.
One method uses the fractional part of the product of the key and the golden ratio, or
() 2/15 − . For example, assuming a word size of 8 bits, the golden ratio is multiplied by
28 to obtain 158. The product of the 8-bit key and 158 results in a 16-bit integer. For a table
size of 25 the 5 most significant bits of the least significant word are extracted for the hash
value. The following definitions may be used for the multiplication method:

 - 5 -

' 8-bit index
Private Const K As Long = 158

' 16-bit index
Private Const K As Long = 40503

' 32-bit index
Private Const K As Long = 2654435769

' bitwidth(index)=w, size of table=2^m
Private Const S As Long = 2^(w - m)
Private Const N As Long = 2^m - 1
Hash = ((K * Key) And N) \ S

 For example, if HashTableSize is 1024 (210), then a 16-bit index is sufficient and S would
be assigned a value of 2(16 - 10) = 64. Constant N would be 210 - 1, or 1023. Thus, we have:

Private Const K As Long = 40503
Private Const S As Long = 64
Private Const N As Long = 1023

Public Function Hash(ByVal Key As Long) As Long
 Hash = ((K * Key) And N) \ S
End Function

Variable String Addition Method (TableSize = 256)
To hash a variable-length string, each character is added, modulo 256, to a total. A hash
value, range 0-255, is computed.

Public Function Hash(ByVal S As String) As Long
 Dim h As Byte
 Dim i As Long

 h = 0
 For i = 1 to Len(S)
 h = h + Asc(Mid(S, i, 1))
 Next i
 Hash = h
End Function

Variable String Exclusive-Or Method (Tablesize = 256)
This method is similar to the addition method, but successfully distinguishes similar words
and anagrams. To obtain a hash value in the range 0-255, all bytes in the string are
exclusive-or'd together. However, in the process of doing each exclusive-or, a random
component is introduced.

 - 6 -

Private Rand8(0 To 255) As Byte

Public Function Hash(ByVal S As String) As Long
 Dim h As Byte
 Dim i As Long

 h = 0
 For i = 1 To Len(S)
 h = Rand8(h Xor Asc(Mid(S, i, 1)))
 Next i
 Hash = h
End Function

Rand8 is a table of 256 8-bit unique random numbers. The exact ordering is not critical.
The exclusive-or method has its basis in cryptography, and is quite effective
(Pearson [1990]).

Variable String Exclusive-Or Method (Tablesize <= 65536)
If we hash the string twice, we may derive a hash value for an arbitrary table size up to
65536. The second time the string is hashed, one is added to the first character. Then the
two 8-bit hash values are concatenated together to form a 16-bit hash value.

Private Rand8(0 To 255) As Byte

Public Function Hash(ByVal S As String,
 ByVal HashTableSize As Long) As Long
 Dim h1 As Byte
 Dim h2 As Byte
 Dim c As Byte
 Dim i As Long

 if Len(S) = 0 Then
 Hash = 0
 Exit Function
 End If

 h1 = Asc(Mid(S, 1, 1))
 h2 = h1 + 1
 For i = 2 To Len(S)
 c = Asc(Mid(S, i, 1))
 h1 = Rand8(h1 Xor c)
 h2 = Rand8(h2 Xor c)
 Next i

 ' Hash is in range 0 .. 65535
 Hash = (h1 * 256) + h2
 ' scale Hash to table size
 Hash = Hash Mod HashTableSize
End Function

http://www.acm.org/pubs/citations/journals/cacm/1990-33-6/p677-pearson/

 - 7 -

Hashing strings is computationally expensive, as we manipulate each byte in the string. A
more efficient technique utilizes a DLL, written in C, to perform the hash function.
Included in the download is a test program that hashes strings using both C and Visual
Basic. The C version is typically 20 times faster.

Node Representation
If you plan to code your own hashing algorithm, you'll need a way to store data in nodes,
and a method for referencing the nodes. This may be done by storing nodes in objects and
arrays. I'll use a linked-list to illustrate each method.

Objects
References to objects are implemented as pointers in Visual Basic. One implementation
simply defines the data fields of the node in a class, and accesses the fields from a module:

' in class CObj
Public NextNode As CObj
Public Value As Variant

' in module Main
Private hdrObj As CObj
Private pObj As CObj

' add new node to list
Set pObj = New CObj
Set pObj.NextNode = hdrObj
Set hdrObj = pObj
pObj.Value = value

' find value in list
Set pObj = hdrObj
Do While Not pObj Is Nothing
 If pObj.Value = value Then Exit Do
 Set pObj = pObj.NextNode
Loop

' delete first node
Set pObj = hdrObj.NextNode
Set hdrObj = pObj
Set pObj = Nothing

In the above code, pObj is internally represented as a pointer to the class. When we add a
new node to the list, an instance of the node is allocated, and a pointer to the node is placed
in pObj. The expression pObj.Value actually de-references the pointer, and accesses the
Value field. To delete the first node, we remove all references to the underlying class.

 - 8 -

Arrays
An alternative implementation allocates an array of nodes, and the address of each node is
represented as an index into the array.

' list header
Private hdrArr As Long

' next free node
Private nxtArr As Long

' fields of node
Private NextNode(1 To 100) As Long
Private Value(1 To 100) As Variant

' initialization
hdrArr = 0
nxtArr = 1

' add new node to list
pArr = nxtArr
nxtArr = nxtArr + 1
NextNode(pArr) = hdrArr
hdrArr = pArr
Value(pArr) = value

' find value in list
pArr = hdrArr
Do While pArr <> 0
 If Value(pArr) = value Then Exit Do
 pArr = NextNode(pArr)
Loop

Each field of a node is represented as a separate array, and referenced by subscripts instead
of pointers. For a more robust solution, there are several problems to solve. In this example,
we've allowed for 100 nodes, with no error checking. Enhancements could include
dynamically adjusting the arrays size when nxtArr exceeds array bounds. Also, no
provisions have been made to free a node for possible re-use. This may be accomplished
by maintaining a list of subscripts referencing free array elements, and providing functions
to allocate and free subscripts. Included in the download is a class designed to manage
node allocation, allowing for dynamic array resizing and node re-use.

 - 9 -

Comparison
Table 2 illustrates resource requirements for a hash table implemented using three
strategies. The array method represents nodes as elements of an array, the object method
represents nodes as objects, while the collection method utilizes the built-in hashing feature
of Visual Basic collections.

n method insert find delete kBytes faults
array 10 10 10 72 17

1,000 object 50 20 40 104 26
collection 60 40 40 100 25
array 40 50 40 228 132

5,000 object 301 90 261 744 186
collection 490 220 220 516 129
array 90 101 90 412 297

10,000 object 711 200 822 1,604 401
collection 1,111 471 491 1,044 261
array 450 541 540 2,252 1,524

50,000 object 7,481 1,062 13,279 8,480 2,118
collection 9,394 2,623 2,794 5,420 1,355
array 912 1,141 1,122 4,504 3,047

100,000 object 22,182 2,103 48,570 17,072 4,266
collection 27,830 5,658 5,918 10,896 2,724

time(ms)

Table 2: Resource Requirements

Memory requirements and page faults are shown for insertion only. Hash table size for
arrays and objects was 1/10th the total count. Tests were run using a 200Mhz Pentium with
64Meg of memory on a Windows NT 4.0 operating system. Statistics for memory use and
page faults were obtained from the NT Task Manager. Code may be downloaded that
implements the above tests, so you may repeat the experiment.
 It is immediately apparent that the array method is fastest, and consumes the least
memory. Objects consume four times as much memory as arrays. In fact, overhead for a
single object is about 140 bytes. Collections take about twice as much room as arrays.
 An interesting anomaly is the high deletion time associated with objects. When we
increase the number of nodes from 50,000 to 100,000 (a factor of 2), the time for deletion
increases from 13 to 48 seconds (a factor of 4). During deletion, no page faults were noted.
Consequently, the extra overhead was compute time, not I/O time. One implementation
used at run-time for freeing memory involves maintaining a list, ordered by memory
location, of free nodes. When memory is freed, the list is traversed so that memory to be
released can be returned to the appropriate place in the list. This is done so that memory
chunks may be recombined when adjacent chunks are freed. Unfortunately, this algorithm
runs in O(n2) time, where execution time is roughly proportional to the square of the
number of items being released.
 I encountered a similar problem while working on compilers for Apollo. In this case,
however, the problem was exacerbated by page faults that occurred while traversing links.
The solution involved an in-core index that reduced the number of links traversed.

 - 10 -

Conclusion
Hashing is an effective method to quickly access data using a key value. Fortunately,
Visual Basic includes collections; an effective solution that is easy to code. In this article,
we compared collections with hand-coded solutions. Along the way we discovered that
storing data in objects for large datasets can incur substantial penalties in both execution
time and storage requirements. In this case, you can make significant gains by coding your
own algorithm, utilizing arrays for node storage. For smaller datasets, however, collections
remain a good choice.

Bibliography
Cormen, Thomas H., Charles E. Leiserson and Ronald L. Rivest [2001]. Introduction to
Algorithms. McGraw-Hill, New York.

Knuth, Donald. E. [1998]. The Art of Computer Programming, Volume 3, Sorting and
Searching. Addison-Wesley, Reading, Massachusetts.

Pearson, Peter K [1990]. Fast Hashing of Variable-Length Text Strings. Communications
of the ACM, 33(6):677-680, June 1990.

Stephens, Rod [1998]. Ready-to-Run Visual Basic Algorithms. John Wiley & Sons, Inc.,
New York.

http://www.amazon.com/exec/obidos/ISBN=0262032937/none01A/
http://www.amazon.com/exec/obidos/ISBN=0262032937/none01A/
http://www.amazon.com/exec/obidos/ISBN=0201896850/none01A/
http://www.amazon.com/exec/obidos/ISBN=0201896850/none01A/
http://www.acm.org/pubs/citations/journals/cacm/1990-33-6/p677-pearson/
http://www.amazon.com/exec/obidos/ISBN=0471242683/none01A/

	Preface
	Open Hashing
	Hash Functions
	Node Representation
	Comparison
	Conclusion
	Bibliography

