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Preface 
 
Hash tables offer a method for quickly storing and accessing data based on a key value. 
When you access a Visual Basic collection using a key, a hashing algorithm is used to 
determine the location of the associated record. Collections, as implemented, do not 
support duplicate keys. For this reason, and other performance considerations, you may 
wish to code your own hashing algorithm. 
 I'll discuss open hashing, where data is stored in a node, and nodes are chained from 
entries in a hash table. I'll also examine the effect of hash table size on execution time. This 
is followed by a section on hashing algorithms. Then we'll look at different techniques for 
representing nodes. Finally, I'll compare the various strategies, examining execution time 
and storage requirements.  
 Source code for all examples may be downloaded from the site listed below. Cormen 
[2001] and Knuth [1998] both contain excellent discussions on hashing. Stephens [1998] 
is a good reference for hashing and node representation in Visual Basic. This article also 
appears in the spring 1999 issue of the Technical Guide to Visual Programming, published 
by Fawcette Technical Publications.  
  
 
THOMAS NIEMANN 
Portland, Oregon 
 
web site:  epaperpress.com 
  

http://www.amazon.com/exec/obidos/ISBN=0262032937
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 - 3 - 

Open Hashing 
A hash table is simply an array that is addressed via a hash function. For example, in Figure 
1, HashTable is an array with 8 elements. Each element is a pointer to a linked list of 
numeric data. The hash function for this example simply divides the data key by 8, and 
uses the remainder as an index into the table. This yields a number from 0 to 7. Since the 
range of indices for HashTable is 0 to 7, we are guaranteed that the index is valid. 
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Figure 1: A Hash Table 

 
 To insert a new item in the table, we hash the key to determine which list the item goes 
on, and then insert the item at the beginning of the list. For example, to insert 11, we divide 
11 by 8 giving a remainder of 3. Thus, 11 goes on the list starting at HashTable(3). To 
find a number, we hash the number and chain down the correct list to see if it is in the table. 
To delete a number, we find the number and remove the node from the linked list. 
 Entries in the hash table are dynamically allocated and entered on a linked list 
associated with each hash table entry. This technique is known as chaining. If the hash 
function is uniform, or equally distributes the data keys among the hash table indices, then 
hashing effectively subdivides the list to be searched. Worst-case behavior occurs when all 
keys hash to the same index. Then we simply have a single linked list that must be 
sequentially searched. Consequently, it is important to choose a good hash function. The 
following sections describe several hashing algorithms. 

Table Size 
Assuming n data items, the hash table size should be large enough to accommodate a 
reasonable number of entries. Table 1 shows the maximum time required to search for all 
entries in a table containing 10,000 items. 
 

size time (ms)
1 23,544

10 2,473
100 331

1,000 100
10,000 70  

Table 1: Table Size vs Search Time 
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A small table size substantially increases the time required to find a key. A hash table may 
be viewed as a collection of linked lists. As the table becomes larger, the number of lists 
increases, and the average number of nodes on each list decreases. If the table size is 1, 
then the table is really a single linked list of length n. Assuming a perfect hash function, a 
table size of 2 has two lists of length n/2. If the table size is 100, then we have 100 lists of 
length n/100. This greatly reduces the length of the list to be searched. There is considerable 
leeway in the choice of table size. 

Hash Functions 
In the previous example, we determined a hash value by examining the remainder after 
division. In this section we’ll examine several algorithms that compute a hash value. 

Division Method (TableSize = Prime) 
A hash value, from 0 to (HashTableSize - 1), is computed by dividing the key value by the 
size of the hash table and taking the remainder: 
 

Public Function Hash(ByVal Key As Long) As Long 
 Hash = Key Mod HashTableSize 
End Function 

 
Selecting an appropriate HashTableSize is important to the success of this method. For 
example, a HashTableSize divisible by two would yield even hash values for even keys, 
and odd hash values for odd keys. This is an undesirable property, as all keys would hash 
to an even value if they happened to be even. If HashTableSize is a power of two, then the 
hash function simply selects a subset of the key bits as the table index. To obtain a more 
random scattering, HashTableSize should be a prime number not too close to a power of 
two. 

Multiplication Method  (TableSize = 2N) 
The multiplication method may be used for a HashTableSize that is a power of 2. The key 
is multiplied by a constant, and then the necessary bits are extracted to index into the table. 
One method uses the fractional part of the product of the key and the golden ratio, or 
( ) 2/15 − . For example, assuming a word size of 8 bits, the golden ratio is multiplied by 
28 to obtain 158. The product of the 8-bit key and 158 results in a 16-bit integer. For a table 
size of 25 the 5 most significant bits of the least significant word are extracted for the hash 
value. The following definitions may be used for the multiplication method: 
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' 8-bit index 
Private Const K As Long = 158 
 
' 16-bit index 
Private Const K As Long = 40503 
 
' 32-bit index 
Private Const K As Long = 2654435769 
 
' bitwidth(index)=w, size of table=2^m 
Private Const S As Long = 2^(w - m) 
Private Const N As Long = 2^m - 1 
Hash = ((K * Key) And N) \ S 

 
    For example, if HashTableSize is 1024 (210), then a 16-bit index is sufficient and S would 
be assigned a value of 2(16 - 10) = 64. Constant N would be 210 - 1, or 1023. Thus, we have: 
 

Private Const K As Long = 40503 
Private Const S As Long = 64 
Private Const N As Long = 1023 
 
Public Function Hash(ByVal Key As Long) As Long 
    Hash = ((K * Key) And N) \ S 
End Function 

Variable String Addition Method (TableSize = 256) 
To hash a variable-length string, each character is added, modulo 256, to a total. A hash 
value, range 0-255, is computed. 
 

Public Function Hash(ByVal S As String) As Long 
 Dim h As Byte 
 Dim i As Long 
     
 h = 0 
 For i = 1 to Len(S) 
  h = h + Asc(Mid(S, i, 1)) 
 Next i 
 Hash = h 
End Function 

Variable String Exclusive-Or Method (Tablesize = 256) 
This method is similar to the addition method, but successfully distinguishes similar words 
and anagrams. To obtain a hash value in the range 0-255, all bytes in the string are 
exclusive-or'd together. However, in the process of doing each exclusive-or, a random 
component is introduced. 
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Private Rand8(0 To 255) As Byte 
 
Public Function Hash(ByVal S As String) As Long 
 Dim h As Byte 
 Dim i As Long 
 
 h = 0 
 For i = 1 To Len(S) 
  h = Rand8(h Xor Asc(Mid(S, i, 1))) 
 Next i 
 Hash = h 
End Function 

 
Rand8 is a table of 256 8-bit unique random numbers. The exact ordering is not critical. 
The exclusive-or method has its basis in cryptography, and is quite effective 
(Pearson [1990]). 

Variable String Exclusive-Or Method (Tablesize <= 65536)  
If we hash the string twice, we may derive a hash value for an arbitrary table size up to 
65536. The second time the string is hashed, one is added to the first character. Then the 
two 8-bit hash values are concatenated together to form a 16-bit hash value. 
 

Private Rand8(0 To 255) As Byte 
 
Public Function Hash(ByVal S As String,  
  ByVal HashTableSize As Long) As Long 
 Dim h1 As Byte 
 Dim h2 As Byte 
 Dim c As Byte 
 Dim i As Long 
 
 if Len(S) = 0 Then 
  Hash = 0 
  Exit Function 
 End If 
 
 h1 = Asc(Mid(S, 1, 1)) 
 h2 = h1 + 1 
 For i = 2 To Len(S) 
  c = Asc(Mid(S, i, 1)) 
  h1 = Rand8(h1 Xor c) 
  h2 = Rand8(h2 Xor c) 
 Next i 
 
 ' Hash is in range 0 .. 65535 
 Hash = (h1 * 256) + h2 
 ' scale Hash to table size 
 Hash = Hash Mod HashTableSize 
End Function 
 

http://www.acm.org/pubs/citations/journals/cacm/1990-33-6/p677-pearson/
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Hashing strings is computationally expensive, as we manipulate each byte in the string. A 
more efficient technique utilizes a DLL, written in C, to perform the hash function. 
Included in the download is a test program that hashes strings using both C and Visual 
Basic. The C version is typically 20 times faster.  

Node Representation 
If you plan to code your own hashing algorithm, you'll need a way to store data in nodes, 
and a method for referencing the nodes. This may be done by storing nodes in objects and 
arrays. I'll use a linked-list to illustrate each method. 

Objects 
References to objects are implemented as pointers in Visual Basic. One implementation 
simply defines the data fields of the node in a class, and accesses the fields from a module: 
 

' in class CObj 
Public NextNode As CObj 
Public Value As Variant 
  
' in module Main 
Private hdrObj As CObj 
Private pObj As CObj 
 
' add new node to list 
Set pObj = New CObj 
Set pObj.NextNode = hdrObj 
Set hdrObj = pObj 
pObj.Value = value 
 
' find value in list 
Set pObj = hdrObj 
Do While Not pObj Is Nothing 
 If pObj.Value = value Then Exit Do 
 Set pObj = pObj.NextNode 
Loop 
 
' delete first node 
Set pObj = hdrObj.NextNode 
Set hdrObj = pObj 
Set pObj = Nothing 

 
In the above code, pObj is internally represented as a pointer to the class. When we add a 
new node to the list, an instance of the node is allocated, and a pointer to the node is placed 
in pObj. The expression pObj.Value actually de-references the pointer, and accesses the 
Value field. To delete the first node, we remove all references to the underlying class. 
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Arrays 
An alternative implementation allocates an array of nodes, and the address of each node is 
represented as an index into the array. 
 

' list header 
Private hdrArr As Long 
 
' next free node 
Private nxtArr As Long 
  
' fields of node 
Private NextNode(1 To 100) As Long 
Private Value(1 To 100) As Variant 
 
' initialization 
hdrArr = 0 
nxtArr = 1 
 
' add new node to list 
pArr = nxtArr 
nxtArr = nxtArr + 1 
NextNode(pArr) = hdrArr 
hdrArr = pArr 
Value(pArr) = value 
 
' find value in list 
pArr = hdrArr 
Do While pArr <> 0 
 If Value(pArr) = value Then Exit Do 
 pArr = NextNode(pArr) 
Loop 

 
Each field of a node is represented as a separate array, and referenced by subscripts instead 
of pointers. For a more robust solution, there are several problems to solve. In this example, 
we've allowed for 100 nodes, with no error checking. Enhancements could include 
dynamically adjusting the arrays size when nxtArr exceeds array bounds. Also, no 
provisions have been made to free a node for possible re-use. This may be accomplished 
by maintaining a list of subscripts referencing free array elements, and providing functions 
to allocate and free subscripts. Included in the download is a class designed to manage 
node allocation, allowing for dynamic array resizing and node re-use. 
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Comparison 
Table 2 illustrates resource requirements for a hash table implemented using three 
strategies. The array method represents nodes as elements of an array, the object method 
represents nodes as objects, while the collection method utilizes the built-in hashing feature 
of Visual Basic collections.  
 

n method insert find delete kBytes faults
array 10 10 10 72 17

1,000 object 50 20 40 104 26
collection 60 40 40 100 25
array 40 50 40 228 132

5,000 object 301 90 261 744 186
collection 490 220 220 516 129
array 90 101 90 412 297

10,000 object 711 200 822 1,604 401
collection 1,111 471 491 1,044 261
array 450 541 540 2,252 1,524

50,000 object 7,481 1,062 13,279 8,480 2,118
collection 9,394 2,623 2,794 5,420 1,355
array 912 1,141 1,122 4,504 3,047

100,000 object 22,182 2,103 48,570 17,072 4,266
collection 27,830 5,658 5,918 10,896 2,724

time(ms)

 
Table 2: Resource Requirements 

 
Memory requirements and page faults are shown for insertion only. Hash table size for 
arrays and objects was 1/10th the total count. Tests were run using a 200Mhz Pentium with 
64Meg of memory on a Windows NT 4.0 operating system. Statistics for memory use and 
page faults were obtained from the NT Task Manager. Code may be downloaded that 
implements the above tests, so you may repeat the experiment. 
 It is immediately apparent that the array method is fastest, and consumes the least 
memory. Objects consume four times as much memory as arrays. In fact, overhead for a 
single object is about 140 bytes. Collections take about twice as much room as arrays. 
 An interesting anomaly is the high deletion time associated with objects. When we 
increase the number of nodes from 50,000 to 100,000 (a factor of 2), the time for deletion 
increases from 13  to 48 seconds (a factor of 4). During deletion, no page faults were noted. 
Consequently, the extra overhead was compute time, not I/O time. One implementation 
used at run-time for freeing memory involves maintaining a list, ordered by memory 
location, of free nodes. When memory is freed, the list is traversed so that memory to be 
released can be returned to the appropriate place in the list. This is done so that memory 
chunks may be recombined when adjacent chunks are freed. Unfortunately, this algorithm 
runs in O(n2) time, where execution time is roughly proportional to the square of the 
number of items being released. 
 I encountered a similar problem while working on compilers for Apollo. In this case, 
however, the problem was exacerbated by page faults that occurred while traversing links. 
The solution involved an in-core index that reduced the number of links traversed. 
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Conclusion 
Hashing is an effective method to quickly access data using a key value. Fortunately, 
Visual Basic includes collections; an effective solution that is easy to code. In this article, 
we compared collections with hand-coded solutions. Along the way we discovered that 
storing data in objects for large datasets can incur substantial penalties in both execution 
time and storage requirements. In this case, you can make significant gains by coding your 
own algorithm, utilizing arrays for node storage. For smaller datasets, however, collections 
remain a good choice. 

Bibliography 
Cormen, Thomas H., Charles E. Leiserson and Ronald L. Rivest [2001]. Introduction to 
Algorithms. McGraw-Hill, New York. 
 
Knuth, Donald. E. [1998]. The Art of Computer Programming, Volume 3, Sorting and 
Searching. Addison-Wesley, Reading, Massachusetts. 
 
Pearson, Peter K [1990]. Fast Hashing of Variable-Length Text Strings. Communications 
of the ACM, 33(6):677-680, June 1990. 
 
Stephens, Rod [1998]. Ready-to-Run Visual Basic Algorithms. John Wiley & Sons, Inc., 
New York.  
 

http://www.amazon.com/exec/obidos/ISBN=0262032937/none01A/
http://www.amazon.com/exec/obidos/ISBN=0262032937/none01A/
http://www.amazon.com/exec/obidos/ISBN=0201896850/none01A/
http://www.amazon.com/exec/obidos/ISBN=0201896850/none01A/
http://www.acm.org/pubs/citations/journals/cacm/1990-33-6/p677-pearson/
http://www.amazon.com/exec/obidos/ISBN=0471242683/none01A/

	Preface
	Open Hashing
	Hash Functions
	Node Representation
	Comparison
	Conclusion
	Bibliography

