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Using only a few simple and commonplace instructions, this algorithm 
efficiently maps variable-length text strings on to small integers. 

Fast Hashing of Variable- 
Length Text Strings 

Peter K. Pearson 

In the literature on hashing techniques, most authors 
spend little time discussing any particular hashing 
function, but make do with an allusion to Knuth [3] in 
their haste to get to the interesting topics of table orga- 
nization and collision resolution. The relatively rare 
articles on hashing functions themselves [2] tend to 
discuss algorithms that operate on values of predeter- 
mined length or that make heavy use of operations 
(multiplication, division, or shifts of long bit strings) 
that are absent from the instruction sets of smaller 
microprocessors. 

This article proposes a hashing function specifically 
tailored to variable-length text strings. This function 
takes as input a word W consisting of some number n of 
characters, C1, Cz, . . ., C,, each character being repre- 
sented by one byte, and returns an index in the range 
O-255. An auxiliary table T of 256 randomish bytes is 
used in the process. Here is the proposed algorithm:’ 

h[Ol := 0 ; 
for i in l..n loop 

h[il := T[ h[i-I] xor C[i] ] ; 
end loop ; 
return h[n] ; 

Notice that the processing of each additional charac- 
ter of text requires only an exclusive-OR operation and 
an indexed memory read. Also note that it is not neces- 
sary to know the length of the string at the beginning of 
the computation, a property useful when the end of the 
text string is indicated by a special character rather 
than by a separately stored length variable. 

Two desirable properties of this algorithm for hashing 
variable-length strings derive from the technique of 
cryptographic checksums or message authentication codes 
[4], from which it is adapted. First, a good crypto- 
graphic checksum ensures that small changes to the 
data result in large and seemingly random changes to 
the checksum. In the hashing adaptation, this results in 
good separation of very similar strings. Second, on a 
good cryptographic checksum the effect of changing 
one part of the data must not be cancelled by an easily 

’ In a practical implementation, the subscripts on h are omitted. They are 
shown here to clarify later discussion. 
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computed change to some other part. In hashing, this 
ensures good separation of anagrams, the downfall of 
hashing strategies that begin with a length-reducing ex- 
clusive-OR of substrings. 

The auxiliary table T is obviously crucial to this algo- 
rithm, yet I have found very few constraints on its 
construction. Since the hashing function can only re- 
turn values that appear in T, each index from 0 to 255 
must appear in T exactly once. In other words, T must 
be a permutation of the values (0 . . . 255). Obviously, if 
T[i] = i, the corresponding h is merely a longitudinal 
exclusive-OR checksum, which is a bad hashing func- 
tion because it does not separate anagrams. I have ex- 
perimented by filling T with randomly generated per- 
mutations of (0 . . . 255) and have found no outstanding 
good or bad arrangements. (An attempt to promote 
greater dispersal among very similar short strings by 
clever choice of T, however, turned out to be a very 
bad idea.) 

For the interested reader who does not want to gen- 
erate his own random permutations, Table I presents 
the permutation used in the tests described later in this 
article. 

SEPARATION PERFORMANCE 
The purpose of any text hashing function is to take text 
strings-even very similar text strings-and map them 
onto integers that are spread as uniformly as possible 
over the intended range of output values. In the ab- 
sence of prior knowledge about the strings being 
hashed, a perfectly uniform output distribution cannot 
be expected. The best result that one can expect to 
achieve consistently is a seemingly random mapping of 
input strings onto output values. To see how well h 
does its job, one might ask the following questions. 

If h is applied to a string of random bytes, is each of 
the 256 possible outcomes equally likely? The an- 
swer, probably not surprisingly, is yes. From the algo- 
rithm given earlier, it is clear that if the last input 
character, C[n], is random-equally likely to take any 
value, and uncorrelated with any preceding charac- 
ter-then all final values of h are equally likely. 
If two input strings differ by a single bit, will their 
hash function values collide more often than by 
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chance? The surprising answer here is that they will 
never collide. Two strings of the same length that 
differ in only one character cannot produce the same 
function value. The proof begins with this succession 
of observations: 

(1) h xor c = h’ xor G if and only if h = h’. 
(2) h xor c = h xor c’ if and only if c = c’. 
(3) T[x] = T[x’] if and only if x = x’. 
(4) If c !# c’, T[ h xor c ] !# T[ h xor c’]. 
(5) If h !# h’, T[ h xor c ] !# T[ h’ xor c 1. 

If h[i] is the succession of values encountered during 
the hashing of some string C, and h’[i] that for string 
C’, the fourth observation above guarantees that the 
sequences h and h’ begin to differ at the point where 
C and C’ first differ. The last observation guarantees 
that they must continue to differ until a second pair 
of differing input characters is encountered. 

l On a more practical level, if h is applied to a large 
number of real English words, are the 256 possible 
outcomes reasonably equally represented? Yes, h was 
applied to a spelling-checker dictionary with 26,662 
words (many differing from others in appended “-s” 
or “-edI’), and the number of occurrences of each of 
the 256 output values was tallied. (All dictionary en- 
tries were in lowercase and appeared in alphabetical 
order.) Naturally, the resulting 256 counts were not 
all equal, but they are not alarmingly uneven. The 
traditional chi-square goodness-of-fit test asks how 
often a truly random function would be expected to 
produce a distribution at least as uneven as this, and 
the answer is, “About half the time” (x2 = 255.64, 255 
degrees of freedom, p = 0.477). To test for correlation 
between the hash values of adjacent words, a second 
test was run in which successive hash values were 
exclusive-ORed, and the resulting 26,661 values were 
tallied. The distribution of the 256 resulting tallies 
was notably uniform (x” = 212.47, 255 d.f., p = 0.976). 

COMPARISON WITH A SIMPLE ALTERNATIVE 
Although it seems to receive little attention in the liter- 
ature, the following hashing algorithm is suspected of 
being widely used due to its speed and ease of imple- 
mentation on small processors. (This is a special case of 
the addition option mentioned in [2, p.2681). 

h[Ol := 0 ; 
for i in 1 . . n loop 

h[il := (h[i - l] + C[i] 
mod table-size ; 

end loop ; 
return h[n] 

As before, the subscripts on h would be omitted in any 
practical implementation. If table-size is a power of 
two, the remainder can be extracted without a division 
operation. Also, if the processor can accommodate inte- 
gers larger than any plausible sum of characters, the 
remainder can be taken just once, after all of the totals, 
instead of after each step. 

Addition being commutative, this function will not 
separate anagrams, perhaps an inauspicious sign. The 
distribution of values returned by this function for the 
26,662 dictionary entries mentioned demonstrated a 
significant deviation from uniformity (x” = 468.9, 255 
d.f., p < o.001). 

On the other hand, in a test involving a smaller num- 
ber of words, this additive hashing function performed 
about as well as h. In this test, 128 words were ran- 
domly selected from the 26,662-word dictionary, and 
collisions were counted among the resulting hash val- 
ues. Over ten such trials, the mean number of collisions 
for the additive hashing function (28.2) was only 
slightly higher than for h (26.8). So the nonuniform 
distribution of the additive hashing function does not 
necessarily confer a large performance penalty. 

VARIANTS 
The following variations and extensions of this hashing 
scheme have been explored. 

TABLE I. Pseudorandom Permutation of the Integers 0 through 255 

1 87 49 12 176 178 102 166 121 193 6 84 249 230 44 163 
14 197 213 181 161 85 218 80 64 239 24 226 236 142 38 200 

110 177 104 103 141 253 255 50 77 101 81 18 45 96 31 222 
25 107 190 70 86 237 240 34 72 242 20 214 244 227 149 235 
97 234 57 22 60 250 82 175 ,208 5 127 199 111 62 135 248 

174 169 211 58 66 154 106 195 ,245 171 17 187 182 179 0 243 
132 56 148 75 128 133 158 100 130 126 91 13 153 246 216 219 
119 68 223 78 83 88 201 99 122 11 92 32 136 114 52 10 
138 30 48 183 156 35 61 26 143 74 251 94 129 162 63 152 
170 7 115 167 241 206 3 150 55 59 151 220 90 53 23 131 
125 173 15 238 79 95 89 16 105 137 225 224 217 160 37 123 
118 73 2 157 46 116 9 145 134 228 207 212 202 215 69 229 

27 188 67 124 168 252 42 4 29 108 21 247 19 205 39 203 
233 40 186 147 198 192 155 33 164 191 98 204 165 180 117 76 
140 36 210 172 41 54 159 8 185 232 113 196 231 47 146 120 

51 65 28 144 254 221 93 189 194 139 112 43 71 109 184 209 

This permutation gave a good hashing behavior 

678 Communications of the ACM ]une 1990 Volume 33 Number 6 



Smaller Character Range 
If the range of the input characters can be limited, a 
smaller auxiliary table T may be used, and the range of 
h can be limited accordingly. For example, if the input 
string can be limited to digits and uppercase letters, 
then each character can be mapped into the range 
[0, 631 as it is processed; T can be a table of 64 values 
in the range [0, 631, and h will then return a value in 
that range. For example, the 26,544 spelling-checker 
entries consisting entirely of letters and digits were 
hashed with a function that mapped the digits onto 
[0, 91 and both uppercase and lowercase alphabets onto 
[lo, 351. A 64-element T was built by eliminating all 
entries exceeding 63 from the table presented earlier. 
Distribution over the 64 output values was as even as 
would be expected from a random function (x” = 59.17, 
63 degrees of freedom, p = 0.614), while the exclusive- 
ORs of successive values were insignificantly less uni- 
form (x2 = 81.69, 63 d.f., p = 0.057). 

Larger Range of Hash Values 
In some applications, a range of hash indices larger 
than 256 is needed. Here is a simple way to get 16 bits 
of hash index from the function h: 

(1) Apply h to the string, calling the result Hl. 
(2) Add 1 (modulo 256) to the first character of the 

string. 
(3) Apply h to the modified string to get H2. 
(4) Concatenate Hl and H2 to get a Is-bit index. 

When this algorithm was applied to the 26,662-word 
spelling-checker dictionary, 4,721 collisions occurred. 
Since perfectly random hashing would produce, on the 
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average, 4,757 collisions, we conclude that this 16-bit 
extension of h performs essentially as well as random 
hashing. 

In a second test, the 65,536 possible Is-bit index val- 
ues were grouped and tallied in 533 bins. (The number 
of bins was chosen so that the average bin would catch 
about 50 of the 26,662 tallies.) The resulting distribu- 
tion of tallies was consistent with the hypothesis of a 
uniform distribution (x’ = 558.6, 532 d.f., p = 0.205). 

Permuted Index Space 
Some users of hashing functions who are concerned 
with collision handling prefer to think of the hashing 
function as producing a permutation of the index space, 
thereby specifying not just a single hash index, but a 
succession of hash indices to be tried in case of colli- 
sions [6]. The function h is well suited to this sort of 
application. By repeatedly incrementing the first char- 
acter of the input string, modulo 256, one causes the 
hash index returned by h to pass through all 256 possi- 
ble index values in a very irregular manner. This is 
derived from the assertion that strings of equal length 
differing in only one character cannot produce the 
same hashing function value. 

Perfect Hashing 
A hashing function is perfect, with respect to some list 
of words, if it maps the words in the list onto distinct 
values, that is, with no collisions. A perfect hashing 
function is minimal if the integers onto which that par- 
ticular list of words is mapped form a contiguous set, 
that is, a set with no holes. (See, for example, [l], [5], 
and [3, pp. 506-5071.) Minimal perfect hashing func- 

TABLE II. A Permutation Demonstrating Perfect Hashing 

39 159 180 252 71 6 13 164 232 35 226 155 98 120 154 69 
157 24 137 29 147 78 121 85 112 a 248 130 55 117 190 160 
176 131 228 64 211 106 38 27 140 30 88 210 227 104 a4 77 

75 107 169 138 195 184 70 90 61 166 7 244 165 108 219 51 
9 139 209 40 31 202 58 179 116 33 207 146 76 60 242 124 

254 197 80 167 153 145 129 233 132 48 246 86 156 177 36 187 
45 1 96 18 19 62 185 234 99 16 218 95 128 224 123 253 
42 109 4 247 72 5 151 136 0 152 148 127 204 133 17 14 

182 217 54 199 119 174 82 57 215 41 114 208 206 110 239 23 
189 15 3 22 188 79 113 172 28 2 222 21 251 225 237 105 
102 32 56 181 126 83 230 53 158 52 59 213 118 100 67 142 
220 170 144 115 205 26 125 168 249 66 175 97 255 92 229 91 
214 236 178 243 46 44 201 250 135 186 150 221 163 216 162 43 

11 101 34 37 194 25 50 12 87 198 173 240 193 171 143 231 
111 141 191 103 74 245 223 20 161 235 122 63 89 149 73 238 
134 68 93 183 241 81 196 49 192 65 212 94 203 10 200 47 

la 9 for 17 in 25 the 
2 and 10 from 18 is 26 this 
3 are 11 had 19 it 27 to 
4 as 12 have 20 not 28 was 
5 at 13 he 21 of 29 which 
6 be 14 her 22 on 30 with 
7 but 15 his 23 or 31 you 
8 by 16 i 24 that 

With this table, a minimal, perfect hashing function is constructed that produces the values shown for 31 common English words. 
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tions are useful in applications where a predetermined 
set of high-frequency words is expected and the hash 
value is to be used to index an array relating to those 
words. If the hashing function is minimal, no elements 
in the array are wasted (unused). 

The table T at the heart of this new hashing function 
can sometimes be modified to produce a minimal, per- 
fect hashing function over a modest list of words. In 
fact, one can usually choose the exact value of the 
function for a particular word. For example, Knuth [3] 
illustrates perfect hashing with an algorithm that maps 
a list of 31 common English words onto unique integers 
between -10 and 30. The table T presented in Table II 
maps these same 31 words onto the integers from 1 to 
31, in alphabetical order. 

Although the procedure for constructing the table in 
Table II is too involved to be detailed here, the follow- 
ing highlights will enable the interested reader to re- 
peat the process. 

(1) 

(2) 

(3) 

(41 

(5) 

A table T was constructed by pseudorandom per- 
mutation of the integers (0 . . . 255). 
One by one, the desired values were assigned to the 
words in the list. Each assignment was effected by 
exchanging two elements in the table. 
For each word, the first candidate considered for 
exchange was T[h[n-l] xor C[n]]), the last table ele- 
ment referenced in the computation of the hash 
function for that word. 
A table element could not be exchanged if it was 
referenced during the hashing of a previously as- 
signed word or if it was referenced earlier in the 
hashing of the same word. 
If the necessary exchange was forbidden by Rule 4, 
attention was shifted to the previously referenced 
table element, T[h(n-21 xor C[n-I]]). 

This procedure is not always successful. For example, 
using the ASCII character codes, if the word “a” hashes 
to 0 and the word “i” hashes to 15, it turns out that the 
word “in” must hash to 0. Initial attempts to map 
Knuth’s 31 words onto the integers (0.. . 30) failed for 
exactly this reason. The shift to the range (1 . . . 31) was 
an ad hoc tactic to circumvent this problem. 

Does this tampering with T damage the statistical 
behavior of the hashing function? Not seriously. When 
the 26,662 dictionary entries are hashed into 256 bins, 
the resulting distribution is still not significantly differ- 
ent from uniform (x” = 266.03, 255 d.f., p = 0.30). Hash- 
ing the 128 randomly selected dictionary words re- 
sulted in an average of 27.5 collisions versus 26.8 with 
the unmodified T. When this function is extended as 
described above to produce 16-bit hash indices, the 
same test produces a substantially greater number of 
collisions (4,870 versus 4,721 with the unmodified T), 

although the distribution still is not significantly differ- 
ent from uniform (x” = 565.2, 532 d.f., p = 0.154). 

CONCLUSION 
The main advantages of the hashing function presented 
here are: 

(1) No restriction is placed on the length of the text 
string. 

(2) The length of the text string does not need to be 
known beforehand. 

(3) Very little arithmetic is performed on each charac- 
ter being hashed. 

(4) Similar strings are not likely to collide. 
(5) Minimal, perfect hashing functions can be built in 

this form. 

Its principal disadvantages are: 

(1) Output value ranges that are not powers of 2 are 
somewhat more complicated to provide. 

(2) More auxiliary memory (the 256-byte table T) is 
required by this hashing function than by many 
traditional functions. 

This hashing function is expected to be particularly 
useful in situations where good separation of similar 
words is needed, very limited instruction sets are avail- 
able, or perfect hashing is desired. 

REFERENCES 
1. Cichelli, R. J. Minimal perfect hash functions made simple. Commun. 

ACM 23, 1 (Jan. 1980). 17. 
2. Knott, G. D. Hashing functions. Comput. I. 18, 3 (1974). 265-278. 
3. Knuth, D. E. The Art of Computer Programming. Vol. III, Searching and 

Sorting. Addison-Wesley, Reading, Mass., 1973. 
4. Meyer, C., and Matyas. S. Cryptography. John Wiley & Sons. New 

York, 1982. 
5. Sprugnoli, R. Perfect hashing functions: A single probe retrieving 

method for static sets. Commun. ACM 20, 11 (Nov. 1977). 841. 
6. Ullman, J. D. A note on the efficiency of hashing functions. I. ACM 

19. 3 (July 1972), 569-575. 

CR Categories and Subject Descriptors: E.2 [Data]: Data Storage Rep- 
resentations-hash-table representations; H.3.1 [Information Storage and 
Retrieval]: Content Analysis and Indexing-indexing methods; H.3.3 [In- 
formation Storage and Retrieval]: Information Search and Retrieval- 
search process. 

General Terms: Algorithms. 
Additional Key Words and phrases: Hashing, scatter storage. 

ABOUT THE AUTHOR: 

PETER PEARSON is a computer scientist at Lawrence Liver- 
more National Laboratory, where his work tends to emphasize 
microcomputers, statistics, cryptology, and physics. Author’s 
Present Address: 5624 Victoria Lane, Livermore, CA 94550 

Permission to copy without fee all or part of this material is granted 
provided that the copies are not made or distributed for direct commer- 
cial advantage, the ACM copyright notice and the title of the publication 
and its date appear, and notice is given that copying is by permission of 
the Association for Computing Machinery. To copy otherwise, or to 
republish, requires a fee and/or specific permission. 

660 Communications of the ACM lune 1990 Volume 33 Number 6 


