
COMPUTNVG PRACTICES

Edgar H. Sibley
Panel Editor

Using only a few simple and commonplace instructions, this algorithm
efficiently maps variable-length text strings on to small integers.

Fast Hashing of Variable-
Length Text Strings

Peter K. Pearson

In the literature on hashing techniques, most authors
spend little time discussing any particular hashing
function, but make do with an allusion to Knuth [3] in
their haste to get to the interesting topics of table orga-
nization and collision resolution. The relatively rare
articles on hashing functions themselves [2] tend to
discuss algorithms that operate on values of predeter-
mined length or that make heavy use of operations
(multiplication, division, or shifts of long bit strings)
that are absent from the instruction sets of smaller
microprocessors.

This article proposes a hashing function specifically
tailored to variable-length text strings. This function
takes as input a word W consisting of some number n of
characters, C1, Cz, . . ., C,, each character being repre-
sented by one byte, and returns an index in the range
O-255. An auxiliary table T of 256 randomish bytes is
used in the process. Here is the proposed algorithm:’

h[Ol := 0 ;
for i in l..n loop

h[il := T[h[i-I] xor C[i]] ;
end loop ;
return h[n] ;

Notice that the processing of each additional charac-
ter of text requires only an exclusive-OR operation and
an indexed memory read. Also note that it is not neces-
sary to know the length of the string at the beginning of
the computation, a property useful when the end of the
text string is indicated by a special character rather
than by a separately stored length variable.

Two desirable properties of this algorithm for hashing
variable-length strings derive from the technique of
cryptographic checksums or message authentication codes
[4], from which it is adapted. First, a good crypto-
graphic checksum ensures that small changes to the
data result in large and seemingly random changes to
the checksum. In the hashing adaptation, this results in
good separation of very similar strings. Second, on a
good cryptographic checksum the effect of changing
one part of the data must not be cancelled by an easily

’ In a practical implementation, the subscripts on h are omitted. They are
shown here to clarify later discussion.

0 1990 ACM OOOl-0782/90/0600-0677 $1.50

computed change to some other part. In hashing, this
ensures good separation of anagrams, the downfall of
hashing strategies that begin with a length-reducing ex-
clusive-OR of substrings.

The auxiliary table T is obviously crucial to this algo-
rithm, yet I have found very few constraints on its
construction. Since the hashing function can only re-
turn values that appear in T, each index from 0 to 255
must appear in T exactly once. In other words, T must
be a permutation of the values (0 . . . 255). Obviously, if
T[i] = i, the corresponding h is merely a longitudinal
exclusive-OR checksum, which is a bad hashing func-
tion because it does not separate anagrams. I have ex-
perimented by filling T with randomly generated per-
mutations of (0 . . . 255) and have found no outstanding
good or bad arrangements. (An attempt to promote
greater dispersal among very similar short strings by
clever choice of T, however, turned out to be a very
bad idea.)

For the interested reader who does not want to gen-
erate his own random permutations, Table I presents
the permutation used in the tests described later in this
article.

SEPARATION PERFORMANCE
The purpose of any text hashing function is to take text
strings-even very similar text strings-and map them
onto integers that are spread as uniformly as possible
over the intended range of output values. In the ab-
sence of prior knowledge about the strings being
hashed, a perfectly uniform output distribution cannot
be expected. The best result that one can expect to
achieve consistently is a seemingly random mapping of
input strings onto output values. To see how well h
does its job, one might ask the following questions.

If h is applied to a string of random bytes, is each of
the 256 possible outcomes equally likely? The an-
swer, probably not surprisingly, is yes. From the algo-
rithm given earlier, it is clear that if the last input
character, C[n], is random-equally likely to take any
value, and uncorrelated with any preceding charac-
ter-then all final values of h are equally likely.
If two input strings differ by a single bit, will their
hash function values collide more often than by

June 1990 Volume 33 Number 6 Communications of the ACM 677

Computing Practices

chance? The surprising answer here is that they will
never collide. Two strings of the same length that
differ in only one character cannot produce the same
function value. The proof begins with this succession
of observations:

(1) h xor c = h’ xor G if and only if h = h’.
(2) h xor c = h xor c’ if and only if c = c’.
(3) T[x] = T[x’] if and only if x = x’.
(4) If c !# c’, T[h xor c] !# T[h xor c’].
(5) If h !# h’, T[h xor c] !# T[h’ xor c 1.

If h[i] is the succession of values encountered during
the hashing of some string C, and h’[i] that for string
C’, the fourth observation above guarantees that the
sequences h and h’ begin to differ at the point where
C and C’ first differ. The last observation guarantees
that they must continue to differ until a second pair
of differing input characters is encountered.

l On a more practical level, if h is applied to a large
number of real English words, are the 256 possible
outcomes reasonably equally represented? Yes, h was
applied to a spelling-checker dictionary with 26,662
words (many differing from others in appended “-s”
or “-edI’), and the number of occurrences of each of
the 256 output values was tallied. (All dictionary en-
tries were in lowercase and appeared in alphabetical
order.) Naturally, the resulting 256 counts were not
all equal, but they are not alarmingly uneven. The
traditional chi-square goodness-of-fit test asks how
often a truly random function would be expected to
produce a distribution at least as uneven as this, and
the answer is, “About half the time” (x2 = 255.64, 255
degrees of freedom, p = 0.477). To test for correlation
between the hash values of adjacent words, a second
test was run in which successive hash values were
exclusive-ORed, and the resulting 26,661 values were
tallied. The distribution of the 256 resulting tallies
was notably uniform (x” = 212.47, 255 d.f., p = 0.976).

COMPARISON WITH A SIMPLE ALTERNATIVE
Although it seems to receive little attention in the liter-
ature, the following hashing algorithm is suspected of
being widely used due to its speed and ease of imple-
mentation on small processors. (This is a special case of
the addition option mentioned in [2, p.2681).

h[Ol := 0 ;
for i in 1 . . n loop

h[il := (h[i - l] + C[i]
mod table-size ;

end loop ;
return h[n]

As before, the subscripts on h would be omitted in any
practical implementation. If table-size is a power of
two, the remainder can be extracted without a division
operation. Also, if the processor can accommodate inte-
gers larger than any plausible sum of characters, the
remainder can be taken just once, after all of the totals,
instead of after each step.

Addition being commutative, this function will not
separate anagrams, perhaps an inauspicious sign. The
distribution of values returned by this function for the
26,662 dictionary entries mentioned demonstrated a
significant deviation from uniformity (x” = 468.9, 255
d.f., p < o.001).

On the other hand, in a test involving a smaller num-
ber of words, this additive hashing function performed
about as well as h. In this test, 128 words were ran-
domly selected from the 26,662-word dictionary, and
collisions were counted among the resulting hash val-
ues. Over ten such trials, the mean number of collisions
for the additive hashing function (28.2) was only
slightly higher than for h (26.8). So the nonuniform
distribution of the additive hashing function does not
necessarily confer a large performance penalty.

VARIANTS
The following variations and extensions of this hashing
scheme have been explored.

TABLE I. Pseudorandom Permutation of the Integers 0 through 255

1 87 49 12 176 178 102 166 121 193 6 84 249 230 44 163
14 197 213 181 161 85 218 80 64 239 24 226 236 142 38 200

110 177 104 103 141 253 255 50 77 101 81 18 45 96 31 222
25 107 190 70 86 237 240 34 72 242 20 214 244 227 149 235
97 234 57 22 60 250 82 175 ,208 5 127 199 111 62 135 248

174 169 211 58 66 154 106 195 ,245 171 17 187 182 179 0 243
132 56 148 75 128 133 158 100 130 126 91 13 153 246 216 219
119 68 223 78 83 88 201 99 122 11 92 32 136 114 52 10
138 30 48 183 156 35 61 26 143 74 251 94 129 162 63 152
170 7 115 167 241 206 3 150 55 59 151 220 90 53 23 131
125 173 15 238 79 95 89 16 105 137 225 224 217 160 37 123
118 73 2 157 46 116 9 145 134 228 207 212 202 215 69 229

27 188 67 124 168 252 42 4 29 108 21 247 19 205 39 203
233 40 186 147 198 192 155 33 164 191 98 204 165 180 117 76
140 36 210 172 41 54 159 8 185 232 113 196 231 47 146 120

51 65 28 144 254 221 93 189 194 139 112 43 71 109 184 209

This permutation gave a good hashing behavior

678 Communications of the ACM]une 1990 Volume 33 Number 6

Smaller Character Range
If the range of the input characters can be limited, a
smaller auxiliary table T may be used, and the range of
h can be limited accordingly. For example, if the input
string can be limited to digits and uppercase letters,
then each character can be mapped into the range
[0, 631 as it is processed; T can be a table of 64 values
in the range [0, 631, and h will then return a value in
that range. For example, the 26,544 spelling-checker
entries consisting entirely of letters and digits were
hashed with a function that mapped the digits onto
[0, 91 and both uppercase and lowercase alphabets onto
[lo, 351. A 64-element T was built by eliminating all
entries exceeding 63 from the table presented earlier.
Distribution over the 64 output values was as even as
would be expected from a random function (x” = 59.17,
63 degrees of freedom, p = 0.614), while the exclusive-
ORs of successive values were insignificantly less uni-
form (x2 = 81.69, 63 d.f., p = 0.057).

Larger Range of Hash Values
In some applications, a range of hash indices larger
than 256 is needed. Here is a simple way to get 16 bits
of hash index from the function h:

(1) Apply h to the string, calling the result Hl.
(2) Add 1 (modulo 256) to the first character of the

string.
(3) Apply h to the modified string to get H2.
(4) Concatenate Hl and H2 to get a Is-bit index.

When this algorithm was applied to the 26,662-word
spelling-checker dictionary, 4,721 collisions occurred.
Since perfectly random hashing would produce, on the

Computing Practices

average, 4,757 collisions, we conclude that this 16-bit
extension of h performs essentially as well as random
hashing.

In a second test, the 65,536 possible Is-bit index val-
ues were grouped and tallied in 533 bins. (The number
of bins was chosen so that the average bin would catch
about 50 of the 26,662 tallies.) The resulting distribu-
tion of tallies was consistent with the hypothesis of a
uniform distribution (x’ = 558.6, 532 d.f., p = 0.205).

Permuted Index Space
Some users of hashing functions who are concerned
with collision handling prefer to think of the hashing
function as producing a permutation of the index space,
thereby specifying not just a single hash index, but a
succession of hash indices to be tried in case of colli-
sions [6]. The function h is well suited to this sort of
application. By repeatedly incrementing the first char-
acter of the input string, modulo 256, one causes the
hash index returned by h to pass through all 256 possi-
ble index values in a very irregular manner. This is
derived from the assertion that strings of equal length
differing in only one character cannot produce the
same hashing function value.

Perfect Hashing
A hashing function is perfect, with respect to some list
of words, if it maps the words in the list onto distinct
values, that is, with no collisions. A perfect hashing
function is minimal if the integers onto which that par-
ticular list of words is mapped form a contiguous set,
that is, a set with no holes. (See, for example, [l], [5],
and [3, pp. 506-5071.) Minimal perfect hashing func-

TABLE II. A Permutation Demonstrating Perfect Hashing

39 159 180 252 71 6 13 164 232 35 226 155 98 120 154 69
157 24 137 29 147 78 121 85 112 a 248 130 55 117 190 160
176 131 228 64 211 106 38 27 140 30 88 210 227 104 a4 77

75 107 169 138 195 184 70 90 61 166 7 244 165 108 219 51
9 139 209 40 31 202 58 179 116 33 207 146 76 60 242 124

254 197 80 167 153 145 129 233 132 48 246 86 156 177 36 187
45 1 96 18 19 62 185 234 99 16 218 95 128 224 123 253
42 109 4 247 72 5 151 136 0 152 148 127 204 133 17 14

182 217 54 199 119 174 82 57 215 41 114 208 206 110 239 23
189 15 3 22 188 79 113 172 28 2 222 21 251 225 237 105
102 32 56 181 126 83 230 53 158 52 59 213 118 100 67 142
220 170 144 115 205 26 125 168 249 66 175 97 255 92 229 91
214 236 178 243 46 44 201 250 135 186 150 221 163 216 162 43

11 101 34 37 194 25 50 12 87 198 173 240 193 171 143 231
111 141 191 103 74 245 223 20 161 235 122 63 89 149 73 238
134 68 93 183 241 81 196 49 192 65 212 94 203 10 200 47

la 9 for 17 in 25 the
2 and 10 from 18 is 26 this
3 are 11 had 19 it 27 to
4 as 12 have 20 not 28 was
5 at 13 he 21 of 29 which
6 be 14 her 22 on 30 with
7 but 15 his 23 or 31 you
8 by 16 i 24 that

With this table, a minimal, perfect hashing function is constructed that produces the values shown for 31 common English words.

June 1990 Volume 33 Number 6 Communications of the ACM 679

Computing Practices

tions are useful in applications where a predetermined
set of high-frequency words is expected and the hash
value is to be used to index an array relating to those
words. If the hashing function is minimal, no elements
in the array are wasted (unused).

The table T at the heart of this new hashing function
can sometimes be modified to produce a minimal, per-
fect hashing function over a modest list of words. In
fact, one can usually choose the exact value of the
function for a particular word. For example, Knuth [3]
illustrates perfect hashing with an algorithm that maps
a list of 31 common English words onto unique integers
between -10 and 30. The table T presented in Table II
maps these same 31 words onto the integers from 1 to
31, in alphabetical order.

Although the procedure for constructing the table in
Table II is too involved to be detailed here, the follow-
ing highlights will enable the interested reader to re-
peat the process.

(1)

(2)

(3)

(41

(5)

A table T was constructed by pseudorandom per-
mutation of the integers (0 . . . 255).
One by one, the desired values were assigned to the
words in the list. Each assignment was effected by
exchanging two elements in the table.
For each word, the first candidate considered for
exchange was T[h[n-l] xor C[n]]), the last table ele-
ment referenced in the computation of the hash
function for that word.
A table element could not be exchanged if it was
referenced during the hashing of a previously as-
signed word or if it was referenced earlier in the
hashing of the same word.
If the necessary exchange was forbidden by Rule 4,
attention was shifted to the previously referenced
table element, T[h(n-21 xor C[n-I]]).

This procedure is not always successful. For example,
using the ASCII character codes, if the word “a” hashes
to 0 and the word “i” hashes to 15, it turns out that the
word “in” must hash to 0. Initial attempts to map
Knuth’s 31 words onto the integers (0.. . 30) failed for
exactly this reason. The shift to the range (1 . . . 31) was
an ad hoc tactic to circumvent this problem.

Does this tampering with T damage the statistical
behavior of the hashing function? Not seriously. When
the 26,662 dictionary entries are hashed into 256 bins,
the resulting distribution is still not significantly differ-
ent from uniform (x” = 266.03, 255 d.f., p = 0.30). Hash-
ing the 128 randomly selected dictionary words re-
sulted in an average of 27.5 collisions versus 26.8 with
the unmodified T. When this function is extended as
described above to produce 16-bit hash indices, the
same test produces a substantially greater number of
collisions (4,870 versus 4,721 with the unmodified T),

although the distribution still is not significantly differ-
ent from uniform (x” = 565.2, 532 d.f., p = 0.154).

CONCLUSION
The main advantages of the hashing function presented
here are:

(1) No restriction is placed on the length of the text
string.

(2) The length of the text string does not need to be
known beforehand.

(3) Very little arithmetic is performed on each charac-
ter being hashed.

(4) Similar strings are not likely to collide.
(5) Minimal, perfect hashing functions can be built in

this form.

Its principal disadvantages are:

(1) Output value ranges that are not powers of 2 are
somewhat more complicated to provide.

(2) More auxiliary memory (the 256-byte table T) is
required by this hashing function than by many
traditional functions.

This hashing function is expected to be particularly
useful in situations where good separation of similar
words is needed, very limited instruction sets are avail-
able, or perfect hashing is desired.

REFERENCES
1. Cichelli, R. J. Minimal perfect hash functions made simple. Commun.

ACM 23, 1 (Jan. 1980). 17.
2. Knott, G. D. Hashing functions. Comput. I. 18, 3 (1974). 265-278.
3. Knuth, D. E. The Art of Computer Programming. Vol. III, Searching and

Sorting. Addison-Wesley, Reading, Mass., 1973.
4. Meyer, C., and Matyas. S. Cryptography. John Wiley & Sons. New

York, 1982.
5. Sprugnoli, R. Perfect hashing functions: A single probe retrieving

method for static sets. Commun. ACM 20, 11 (Nov. 1977). 841.
6. Ullman, J. D. A note on the efficiency of hashing functions. I. ACM

19. 3 (July 1972), 569-575.

CR Categories and Subject Descriptors: E.2 [Data]: Data Storage Rep-
resentations-hash-table representations; H.3.1 [Information Storage and
Retrieval]: Content Analysis and Indexing-indexing methods; H.3.3 [In-
formation Storage and Retrieval]: Information Search and Retrieval-
search process.

General Terms: Algorithms.
Additional Key Words and phrases: Hashing, scatter storage.

ABOUT THE AUTHOR:

PETER PEARSON is a computer scientist at Lawrence Liver-
more National Laboratory, where his work tends to emphasize
microcomputers, statistics, cryptology, and physics. Author’s
Present Address: 5624 Victoria Lane, Livermore, CA 94550

Permission to copy without fee all or part of this material is granted
provided that the copies are not made or distributed for direct commer-
cial advantage, the ACM copyright notice and the title of the publication
and its date appear, and notice is given that copying is by permission of
the Association for Computing Machinery. To copy otherwise, or to
republish, requires a fee and/or specific permission.

660 Communications of the ACM lune 1990 Volume 33 Number 6

