OPERATOR PRECEDENCE
PARSING

Tom Niemann

ePaper Press

Preface

While ad-hoc methods are sometimes used for parsing expressions, a more formal technique using
operator precedence simplifies the task. For example an expression such as

(X*xX + y*y)*.5

is easily parsed. Operator precedence parsing is based on bottom-up parsing techniques and uses
a precedence table to determine the next action. The table is easy to construct and is typically
hand-coded. This method is ideal for applications that require a parser for expressions and
embedding compiler technology, such as yacc, would be overkill. The presentation is intuitive with
examples coded in ANSI-C. The online version of this document also includes an example in Visual
Basic. Source code may be downloaded at the web site listed below. An excellent and more
theoretical treatment may be found in Compilers, Principles, Techniques and Tools, by Aho, Sethi,
and Ullman.

In 1976 | was teaching computer science at Diablo Valley College — a 2-year community
college. An HP time-sharing computer was connected to 20 terminals that were all lodged in a
terminal room that was adjacent to my office. During off hours it was a gathering place for
students to experiment with their own projects and a fair amount of comraderie ensued.
Evesdropping | picked up on the fact that they were all trying to write a program to parse
expressions. In quick order | wrote my own program, based on the concepts presented here,
and announced a challenge. In one week they were to choose their fastest parser and we
would have a contest to see if it bested my efforts.

On the day of the contest | was seated next to my challenger. Surrounded by the rest of the
gang we entered the same rather lengthy expression on our terminals. At the count-down we
both pressed the Enter key at the same time. Well, he pressed his but | delayed for a half
second before pressing mine thus giving my opponent an advantage. A roar went up from the
crowd when my program finished first by a clear margin. After listing the program on the printer
they were struck by how short and simple it was. Better than dozens of if statements!

Permission to reproduce portions of this document is given provided the web site listed below is

referenced. No additional restrictions apply. Source code, when part of a software project, may be
used freely without reference to the author.

Tom NIEMANN
Portland, Oregon

web site: epaperpress.com

http://epaperpress.com/lexandyacc/index.html
http://www.amazon.com/exec/obidos/ISBN=0201100886
http://epaperpress.com/

Theory, Part |

Operator precedence parsing is based on bottom-up shift-reduce parsing. As an expression is
parsed tokens are shifted to a stack. At the appropriate time the stack is reduced by applying the
operator to the top of the stack. This is best illustrated by example.

val input action
4 *2+18% shift
*2+1% shift
$ shift
reduce
shift
shift
reduce
accept

step
1

o
=
=2

0 ~NOOUNWN
R I A S A -]
Bh PP B L PP
© oo DD
AFBHe R+ + DN
B PP+
@ 8P

We define two stacks: opr, for operators, and val, for values. A “$” designates the end of input
or end of stack. Initially the stacks are empty, and the input contains an expression to parse. Each
value, as it is encountered, is shifted to the val stack. When the first operator is encountered (step
2), we shift it to the opr stack. The second value is shifted to the val stack in step 3. In step 4,
we have a “*” in opr, and a “+” input symbol. Since we want to multiply before we add (giving
multiplication precedence), we'll reduce the contents of the val, applying the “*” operator to the
top of the val. After reducing, the “+” operator will be shifted to opr in step 5.

This process continues until the input and opr are empty. If all went well, we should be left with
the answer in the val. The following table summarizes the action taken as a function of input and
the top of opr:

Input
opr + * $
+ reduce shift reduce
* reduce reduce reduce
$ shift shift accept

When the input token is “+”, and “+” is on opr, we reduce before shifting the new “+” to opr. This
causes the left-most operator to execute first, and implies that addition is left-associative. If we
were to reduce instead, then addition would be right-associative. When the input token is “*”, and
“+"isin opr, we shift “*” to opr. Later, when reducing, “*” is popped before “+”, giving precedence
to multiplication. By appropriately specifying shift and reduce actions, we can control the
associativity and precedence of operators in an expression. When we encounter an operator in the
input stream, and an operator is already on the stack, take the following action:

o If the operators are different, shift to give higher precedence to the input operator.

e If the operators are the same, shift for right associativity.

Theory, Part Il

Let's extend the previous example to include additional operators.

input

stack + - * / ~ M F p c , (C) $
+ r r s s s S S S S r s r r
- r r s s s S S S S r s r r
* r r r r S S S S s r S r r
/ rrr r r S S S S S r s r r
N r r r r s s s s s r S r r
M r r r r r s s s s r s r r
L r r r r r r r r r r s r r
p r r r r r ro-r r r r s r r
(o} r r r r r ro-r r r r s r r
, r r r r r rr r r r r r e4
(¢ S S s sS s S s S s s s s el
)] r r r r r r e3 e3 e3 r e2 r r
$ S S s s s s s s s ed s e3 a

The above table incorporates the following operators:

e “M”, for unary minus.

e “7” for exponentiation. 5 * 2 yields 25.

o “f”, for factorial. f(x) returns the factorial of x.

e “p”, for permutations. p(n,r) returns the number of permutations for n objects taken r at a
time.

e “c”, for combinations. c(n,r) returns the number of combinations for n objects taken r at a
time.

The following operator precedence is implied, starting at the highest precedence:
e unary minus
e exponentiation, right-associative
o multiplication/division, left-associative
e addition/subtraction, left-associative

The following errors are detected:
e error el: missing right parenthesis
e error e2: missing operator
e error €3: unbalanced right parenthesis
e error e4: invalid function argument

Parentheses are often used to override precedence. This is easily accomodated in the operator
precedence table using the following algorithm:

input action

C shift
DN while opr[tos] = “(
reduce
shift *)*

reduce "QO-

On encountering a left parenthesis, we shift it to the opr stack. When we input a right parenthesis,
the stack is popped until the matching left parenthesis is found. Then we shift the right parenthesis,
and reduce by popping both parentheses off the stack.

For function calls, the function reference is shifted to the stack. Each comma-separated argument
is also shifted to the stack. On encountering a comma, the operator stack is reduced until the
opening parenthesis of the function call is visible, leaving the function parameter on the value stack.
Then the comma is shifted to the stack, and popped on the next reduction. When the closing
parenthesis of the function call is encountered, it will be shifted to the stack and reduced. This will
expose the function call for subsequent reduction.

Operator classes may be used to minimize the size of the precedence table. For example, a single
generic token representing a function call may be pushed on the operator stack. An ordinal, defining
which function is referenced, is pushed on the value stack. For this purpose you may choose to
implement each element on the value stack as a union to allow for different types.

Error-checking is not bullet-proof. For example, omitting commas between function arguments will
be accepted, and work properly. Even more bizarre, reverse-polish notation, where operators follow
operands, is also acceptable. This phenomenon occurs because operators are applied to the top
elements of the value stack, and the order that operators and values are pushed is not significant.
Major errors, such as omitting an operator, will be found by the final reduction, as the stacks will
not be empty. More rigorous error-checking may be done by defining a boolean follow matrix. The
current and previous tokens are used as indices into the matrix to determine if one can follow the
other.

The table is implemented in the next section, using ANSI-C. Note that there are some differences
between my solution and Aho’s:
e Aho specifies three precedence relations, whereas I've only specified two (shift and
reduce). You can use three if you wish; I'm the last one to stifle creativity!
e Aho uses one stack for both values and operators. I've used separate stacks, as the
implementation is typically easier.

Practice

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <math.h>

typedef enum { false ,

/* actions */
typedef enum {
R,
A,
E1l,
E2,
E3,
E4
} actEnum;

/* tokens */
typedef enum {
/* operators */
tAdd,
tSub,
tMul,
tDiv,
tPow,
tUmi,
tFact,
tPerm,
tComb,
tComa,
tlLpr,
tRpr,
tEof,
tMaxOp,
/* non-operators */
tval
} tokEnum;

tokEnum tok;
double tokval;

#define MAX_OPR
#define MAX_VAL
char opr[MAX_OPR];
double val[MAX_VAL];
int oprTop, valTop;
bool fTirsttok;

tru

/*
/*
/*
/*
/*
/*
/*

/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*

/*

/*
/*

50
50
/*
/*
/*
/*

e } bool;

shift */

reduce */

accept */

error: missing right parenthesis */
error: missing operator */

error: unbalanced right parenthesis */
error: invalid function argument */

+ */
- x/
**/
/ >/
~ (power) */

(unary minus) */
f(xX): factorial */
p(n,r): permutations */
c(n,r): combinations */
comma */

«*/
) */
end of string */

maximum number of operators */

value */

token */
token value */

operator stack */

value stack */

top of operator, value stack */
true if first token */

char parseTbl[tMaxOp][tMaxOp] = {
/* stk @ input —~———————
/> + - * /7 ~ M f p c
/> e oo Mo em oo ol ol oo -
/+*/ {R, R, S, S, S, S, S, S, S,
/-*/ {R, R, S, S, S, S, S, S, S,
/**/ {R, R, R, R, S, S, S, S, S,
/7 * {R, R, R, R, S, S, S, S, S,
/~* {R, R, R, R, S, S, S, S, S,
/*mMm*/ {R, R, R, R, R, S, S, S, S,
/* £ */ { E4, E4, E4, E4, E4, E4, E4, E4, E4,
/*p */ { E4, E4, E4, E4, E4, E4, E4, E4, E4,
/*c */ { E4, E4, E4, E4, E4, E4, E4, E4, E4,
/ ,* {R, R, R, R, R, R, R, R, R,
/> (C* {sSs, S, S, S, S, S, S, S, S,
/)* {R, R, R, R, R, R, E3, E3, E3,
/%> {S, S, S, S, S, S, S, S, S,
}:
int error(char *msg) {

printf("'error: %s\n', msg);

return 1;
}
int gettok(void) {

static char str[82];
static tokEnum prevtok;
char *s, *ptr;

/* scan for next symbol */
ifT (firsttok) {
firsttok = false;
prevtok = tEof;
gets(str);
it (*str == "gq") exit(0);

s = strtok(str, " ");
} else {
s = strtok(NULL, ™ ™);

}

U)EU);UU)U)U)(/)U)U)U)(DU)

mXXWwWDIXOXOXIODODOVXIOIOIOD

Wy v v

>X0MM>XUXOXOOXOXIOIOIOD0

RN
S S S S e e e e e e e e

int

/* convert symbol to token */

if (s) {
switch(*s) {
case "+": tok tAdd; break;
case "-": tok tSub; break;
case "*": tok tMull; break;

tDiv; break;
tPow; break;
tLpr; break;
tRpr; break;
tComa; break;
tFact; break;
tPerm; break;
tComb; break;

case "/": tok
case "N": tok
case "(": tok
case ")": tok
case ",": tok
case "f": tok
case "p": tok
case "c": tok

default:
tokval = strtod(s, &ptr);
if Cptr) {
printf(“error: non-numeric data encountered\n’);
return 1;
}
tok = tval;
break;
}
} else {
tok = tEof;

}

/* check for unary minus */
if (tok == tSub) {
if (prevtok != tval && prevtok = tRpr) {
tok = tUmi;
}

}

prevtok = tok;
return O;

shift(void) {
if (tok == tval) {
if (++valTop >= MAX VAL)
return error(‘'val stack overflow™);
val[valTop] = tokval;
} else {
if (++oprTop >= MAX_OPR)
return error(*'opr stack overflow™);
opr[oprTop] = (char)tok;

}
if (gettok()) return 1;
return O;

double fact(double n) {

int

double i, t;
for (t

t*
return t;

1, 1 = 1; 1 <= n; i++)
i;

reduce(void) {

switch(oprfoprTop]) {

case tAdd:
/* apply E := E + E */
if (valTop < 1) return error('syntax error™);
val[valTop-1] = val[valTop-1] + val[valTop];
valTop--;
break;

case tSub:
/* apply E := E - E */
if (valTop < 1) return error(‘'syntax error');
val[valTop-1] = val[valTop-1] - val[valTop];
valTop--;
break;

case tMul:
/* apply E := E * E */
if (valTop < 1) return error(‘'syntax error');
val[valTop-1] = val[valTop-1] * val[valTop];
valTop--;
break;

case tDiv:
/* apply E :=E / E */
if (valTop < 1) return error('syntax error');
val[valTop-1] = val[valTop-1] / val[valTop];
valTop--;
break;

case tUmi:
/* apply E := -E */
if (valTop < 0) return error(''syntax error');
val[valTop] = -val[valTop];
break;

case tPow:
/* apply E := ENE */
if (valTop < 1) return error(‘'syntax error');
val[valTop-1] = pow(val[valTop-1], val[valTopl);
valTop--;
break;

case tFact:
/* apply E := f(E) */
if (valTop < 0) return error(''syntax error');
val[valTop] = fact(val[valTop]);
break;

case tPerm:
/* apply E := p(N,R) */
if (valTop < 1) return error(*'syntax error');
val[valTop-1] = fact(val[valTop-1])/

fact(val[valTop-1]-val[valTop]);

valTop--;
break;

int

case tComb:
/* apply E := c(N,R) */
if (valTop < 1) return error('syntax error');
val[valTop-1] = fact(val[valTop-1])/
(fact(val[valTop]) *
fact(val[valTop-1]-val[valTop]));

valTop--;
break;
case tRpr:
/* pop () off stack */
oprTop--;
break;
}
oprTop--;
return O;

parse(void) {
printf(""\nenter expression (g to quit):\n");

/* initialize for next expression */
oprTop = 0; valTop = -1;

oprfoprTop] = tEof;

Ffirsttok = true;

if (gettok()) return 1;

while(l) {

/* input is value */

if (tok == tval) {
/* shift token to value stack */
if (shift()) return 1;
continue;

}

/* input is operator */
printf("'stk=%d tok=%d\n', opr[oprTop], tok);
switch(parseTbl[opr[oprTop]][tok]) {
case R:
if (reduce()) return 1;
break;
case S:
if (shift()) return 1;
break;
case A:
/* accept */
if (valTop !'= 0) return error(’'syntax error'™);
printf(“'value = %f\n", val[valTop]);
return O;

10

case E1:

return error(*'missing right parenthesis');
case E2:

return error(‘'missing operator');
case E3:

return error(*'unbalanced right parenthesis™);
case E4:

return error(“invalid function argument');
}

}

int main(void) {
while(1) parse(Q);
return O;

11

	Preface
	Theory, Part I
	Theory, Part II
	Practice

